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I. INTRODUCTION

A rod may e represented intrinsically as a stretching line endowed
with structpre. In the most elementary version of this idea one scalar
internal variable can be used to simulate the effects of finite transverse

dimensions in a straight cylindrical rod that undergoes only axisymmetric
motions. The rod then has two kinematically independent degrees of free-
dorm. In cylindrical coordinates R,O,Z the motion of the rod is assumed to
be

z = Z + w(Z,t), r = R[l + u(Z,t)], 6 = O , (1)

where the initial radius of the rod is a, and t is time. All field quanti-
ties depend only on the axial coordinate Z and time t.

In a previous paper 2 some of the consequences of the theory were
worked out for an elastic material with a strain energy W(E,u,q) that
depends on axial strain £ = wZ , radial strain u, and gradient of radial

strain q = uz , where the subscripts denote partial differentiation. In

the terms of general continuum mechanics W is the energy density of a one-
dimensional elastic continuum with one scalar internal variable, and
because of invariance consideratiohs, it is required to be an even function
in q.2 With a kinetic energy density K = 1 2 1 2 Hamilton's princi-

in ~~~ ~ Vw q. Tp2ut aito' m
ple leads to the following Euler-Lagrange equations,

Sz = P1 Wtt QZ - P = P 2utt (2)

where S = W E , P = Wu , Q = W q. In Reference 2 it was shown that the forces

S, P, Q may be interpreted as averages of Piola-Kirchhoff stresses, taken
over a cross-section of the rod,

1 TZ ZdA, P f(rR t TO e)dA , (3)

Q -f RTrdA,

and the appropriate kinetic energy densities are p1 = p where p is the
1 2

density of the rod material and P2 
= 1a . Equation (2)I describes forces

1Antman, S. S., "The Theory of Rods," Handbuch der Pysik, Vol. VIa/2,
Springer-Verlag, New York 1972.

2 Wright, T. W., "Nonlinear Waves in Rods," in Proc. IUTAM Qyrup on Finite
Elasticity. D. E. Carlson and R. T. Shield, eai., Martinua-Nijhoff Pub .,
The Hague, 1981.
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and motions in the axial direction, and equation (2)2 describes forces and
motions in the radial direction.

II. INCOMPRESSIBLE MATERIAL

If the material is incompressible, then c and u are no longer kine-
matically independent and therefore cannot be varied independently in
Hamilton's principle. The incompressibility relationship between E and u,
shown in equation (4),

(1 + + 2 (4)

must be used as a side condition in the variational principle, and the
explicit dependence of the strain energy on radial strain must be sup-
pressed,

W(c,u,q) = i(c,q) (5)

Under these conditions the Euler-Lagrange equations become

Sz- (l+U)Z plwtt QZ + 21(l + u)(l + ) P 2utt ,  (6)

where X is a Lagrange multiplier, and now S = WV and Q = W q. Clearly A may

be interpreted as a superimposed hydrostatic (Cauchy) pressure. In the
for'nulation leading to either (2) or (6) more or less equal weight is given
to both radial shear, which enters through the dependence of W on q, and to
radial inertia, which enters from the finite value for P2.

III. STEADY WAVES

A steady wave is a disturbance that travels down the rod at a constant
speed without distortion. To examine equations (6) for the possibility of
steady waves it is supposed that all field variables depend only on the
combination = Z - Ct , where c is an arbitrary constant. The partial
differential equations then become ordinary differential equations.

S' - [X(l + u) 2 ]' pc 2 E' (7)

Q' + 2X(l + u)(l + c) = pa c2 U ,

where the dash signifies differentiation with respect to , and P1 and P2 have

been written in terms of P. As in Reference 2 there are two integrals of

the motion,

8



S - A(l + 0- pc 2 ( + c) + A , (9)

Qu' + S(l + E) - X - W = (10)

PC2[ C + a 2] + B,
[ (1 2 I2u

where A and B are constants of integration. The first integral is straight

forward. The second integral is obtained by multiplying (7) by (0 + E),
(8) by u', adding the two resulting equations, and noting that (10) is the
integral of the summed expression. Equation (9) may be used to eliminate A

from (10), arriving finally at equation (11),

1 2 1 22 21

Qu' + A(l + c) 2 1 a 2 i + 0 + B.

So far the results are exact given the initial premises concerning the

strain energy, the kinetic energy, and the condition of incompressibility.

IV. SMALL SURFACE ANGLF

Now, suppose that tht surface -'r', is small in the sense that
au' << 1, and express the strain energy as the first two terms of a power
series in ul With coefficients that depend on £ in an arbitrary way,

W(e,q) = W(E,O) + q+ ... . (12)

Alternatively, consider the special case when W can be expressed exactly as

' [ 1 a21a 2 (3

W(c,q) = T(e)de + 4- a . (13)

T(e) is engineering stress (force per unit original area) for uniform
extension, and ii(c) is interpreted as the shear modulus. (In the linear

version of the theory p would be the bulk shear modulus as in Reference 2,
so it seems fair to give it that name for finite extension as well.) From
the assumed form of the energy (13) with X eliminated by use of (8) and u
eliminated by use of the incompressibility condition (4), the integral (9)

may be written

To = T(E) - PC2 ( - 1 02 - y(e) '' , (14)

1 2 -e 3  
-c

where Y = 1 a (1 + ) [A(E) - PC, and TO = T(£o). For convenience A
T 2 0

has been replaced by To - Pc2(1 + Eo). Similarly the integral (11) may now

be written

a a (u _ C p ) U 2

12 22 2

Tdc - T 2( (PCI(1 + E 1 0 + E) + B. (15)

9
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By rearranging terms and using the incompressibility condition (4), the

integral may be rewritten as

1 a (p - pc2) ,2 . 2
-a [Te) - TO - pc ( - C )]dc + C , (16)

where C is an arbitrary constant. Equation (16) also follows from (14)

directly upon noting that multiplication by E' makes the terms
I 0s3 1 2

S 3 + y''c"' the exact derivative of1-yC)E' . Solution of (16) then

follows simply by quadrature.t The integral on the right hand side of (16)

is the area between the homogeneous extension curve and a straight line
2

through the point (T , 0) with slope PC . As shown in Figure 1, the

cross-hatched areas both to the right and to the left of (To , 0 ) are

positive. The Lagrange multiplier is given by the following expression.

S22 2
______ 3li-P] ~2 ~i PC ii~(17)

(1 + +

V. SHOCK WAVES

Although integration of (16) is straightforward, the characteristics

of a particular solution depend on the parameters in the problem and the

nature of the functions T(c) and p(E). In addition, it is also possible

for discontinuities to occur in certain limiting cases. Therefore, before

sketching out the rich variety of solutions available, it is necessary to

consider the propagation of shock waves.

Since the cross sectional area of the rod cannot change discontinu-

ously, the radial strain must be continuous according to (1), and since the

material is incompressible, the axial strain must be continuous as well.

tAifantis and Serrin5 in discussing phase transitions in the presence of

surface tension and Coleman6 in developing a static theory of necking and

drawing of fibers have encountered equations of the form

T = T(£) + $(e) ,2 + y(e)c''. In fact, for static cases when c = 0, equa-
0

tion (14) coincides exactly with Coleman's result if his equilibrium equation

is obtained from a variational principle (see equation (3.20) and the follow-

ing discussion in Reference 6). The more general equation was solved by

finding an integrating factor (e.g., see Rejfrence 6, equation (3.3)) to

obtain a first integral, followed by a quadrature to obtain a second

integral.

10
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However, both u' and el may have discontinuities, and therefore, by (17) so
can X. The appropriate jump condition comes from the integral form of (2)
or (6), 4

1pa v 2  [] [W/aq] (18)

where [-] signifies the jump in a quantity across a shock wave. Substitu-
tion for W from (13) gives

pV2 = uCc) , [q] is arbitrary, (19)

so that the speed V of a shock wave of any amplitude is determined solely
by the instantaneous shear modulus.

If the shock is incorporated into a steady wave, then V = c, and if U(c)
is a monotonic function either increasing or decreasing (the only cases
considered in this paper), then for a given steady wave speed c, (19) can
be satisfied only at isolated values of E, say c = E*, unless v is truly
constant. The situation is shown in Figure 2. Since the left hand side of

(16) is zero at a shock wave, no matter what the value of e' , two steady
waves with the same speed may be jined together at the shock, but of
course each wave has distinct valuea fur TO , 0, and the constant C. These

values are not independent in this case, and in fact if one is known for a
particular steady wave, the others may be easily computed. This is best
seen by referring to Figure 3. For the case shown c > c*, the point R has
coordinates (T , C ) , and C = - Area (PQR). If a second steady wave has

the same speed so that Q'H' is parallel to QR, then R' has coordinates

(T' , E'), and C' = -Area (PQ'R'). The quantity (el2 may be determined
0 0

from (14), noting that y = 0 for a steady shock wave.

[TO + PC2(-* - C)] - -1- a 2 - [-', (20)(1 + )

The magnitude of the left hand side of (20) is just the vertical distance
QQ' in Figure 3.

3Nunziato, J. W., and Walsh, E. K., "One-dimensional Shock Waves in Uniformly
Distributed Granular Materials," Int. J. Solids and Structures 14 (1978)
681-689.

4Wright, T. W., "Weak Shocks and Steady Waves in a Nonlinear Rod or Granular
Material" (to appear, int. J. Solids and Structures).

tIn a three-dimensional context, a discontinuty in the strain gradient would
be classified as an acceleration wave, but in the present context, where the
discontinuity occurs in derivatives of lower order than the highest that
appear in the governing differential equation (2) and (8), it is legitimate
to use the word shock.

12
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VI. STEADY WAVE SOLUTIONS

By a process similar to that used in References 5 and 6 it is possible
to show that bounded smooth solutions in an infinite rod must be one of
three kinds: periodic waves, solitary waves with either a single propa-
gating bulge or neck, or a propagating smooth transition from .one state of
uniform strain to another. But in addition, solutions with discontinui-
ties, as described in the previous section, may occur. Most of these will
appear as limiting cases of the smooth solutions. At this point it is
easiest to proceed by considering examples and special cases. Figure 4
shows a sketch of the rod configuration for each of the cases considered.

A. T(e) is concave down and at co0, uic( 0) < T E(E).

Refer to Figure 1 and consider the following construction. Through
the point T , Eo draw a straight line with positive slope pc2 , chosen such

that P. o) < pc < TE(C0 ). From Figure 2 find c*, which will lie to the
left of E if u(E) is a decreasing function or to the right of c if p(c)

is an increasing function. Finally mark off equal cross hatched areas to
the right and left of co with E* lying outside the cross hatched interval,

and set the constant C equal to minus one half the total cross hatched

area. From the construction, it is clear that E'2 > 0 over the whole
interval from 'in to ,max , and e' = 0 only at the end points. Further-

more, the construction is such that near either end point E' varies as
the square root of the distance from the end point. Every construction of
this kind corresponds to a periodic steady wave. As the magnitude of C
increases, the cross hatched areas extend farther from Eo, corresponding to

a larger amplitude of the wave, until one of the following finally occurs:

either i) emax E , or i) Emi n 
= E* for the case of decreasing U, or iii)

Cmax = s* for the case of increasing p . The preceding discussion shows

that periodic waves form a family with three parameters, say T 0 , c, and

£max . T may be chosen arbitrarily, but c and emax can only be chosen

within limits.

The limiting cases require special treatment.

i) Solitary Waves, max =  . As Ema x increases towards , the period

of the wave also increases and becomes infinite when max = . The wave in

5Aifantis, E. C., and Serrin, J. B., "Towards -z Mechanical Theory of Phase
Transformations," Tech. Rpt., Corrosion Research Center, University of
Minnesota, Minneapolis, 1982.

6 Coleman, B. D. ,"Necking and Drawing in Polymeric Fibers Under Tension," Arch.

Rat. Mech. Anal. 83 (1983) 115-13?.
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______________ PERIODIC WAVES

1111I1110 i) SOLITARY WAVE

'~ii) PERIODIC SHOCKS,
SDECREASING

Siii) PERIODIC SHOCKS,
jINCREASING

ii)' SHARP CRESTED
SOLITARY WAVE

ii'FINITE LENGTHEcID SOLITARY WAVE

i va) SIMILAR To LINEAR
DISPERSIVE PATTERN

Sivb) STRUCTURED SHOCK

Figure 4. Typical mode shapes of steady waves. Dashed lines indicate shock
waves. Roman numerals refer to cases discussed in Section 6.
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this case consists of a single crest, a propagating bulge in the radius of
the rod for the stress/strain curve shown in Figure 1. At infinity behind
and ahead of the wave the strain is g, decreasing to Emin , as determined by

the equal area rule, at the crest. Since the maximum strain is determined
by the choice of TO and c, solitary waves form a two parameter family.

ii) Shock Waves, cmin = e*. As cmin decreases towards E*, the crests

of the wave become less and less rounded until finally when Emin  , the

crests become sharp with e' changing discontinuously. Since C in (16) has

been chosen such that both sides vanish when c =*,

2 a 16(l + e*)3 T(c*) - T - pc2 (C* - 0)
1,jn E' 2 61*00(21)

S* 2 (£*)
a 2E

and c' jumps from one of the values that satisfies (21) to the other. The
numerator in the second f-qctor of (21) is just the negative of the vertical
distance PQ in Figure 3. Choice of c determines 0*, and choice of T0

determines cmax from the equal area rule, so waves of this kind form a two

parameter family.

iii) Shock Waves, Emax = c*. This case is the same as ii) except

that shock waves occur at £max rather than cmi n .

It may happen that two of the limiting cases occur simultaneously.

ii)' Shock Wave, E = e and c . = E* In this case the solitarymax mmi
wave has a sharp crest on it. The two cross hatched areas in Figure 1
extend all the way from eo to i and from Eo to E*. Since only one choice of

T will make the areas equal for a given c, these waves form a one param-
eer family.

iii)' Ema = = c*. By analogy with the previous case it might seem

that this case would correspond to a single shock wave occurring at the
maximum strain, but in fact ' is zero at cmax. This occurs because the

right side of (16) now has a double zero at 'max, but the coefficient of E
'

on the left side has only a simple zero. Thus, these waves are simply
periodic waves of maximum wave length. However, since discontinuities can
occur at P*, one cycle of a wave could be joined to a uniform state both
behind and ahead of the wave thus creating a -,litary wave of finite
wavelength. Since the choice of c determines e (and hence Emax) and the
equal area construction will determine all other parameters, these waves
are a one parameter family.

17



iv) As stated in Section 5, a shock wave may join two steady waves
together if they have the same speed. Cases ii), ii)', and iii) suggest
many ways in which this could be done. Two sharp crested periodic waves
with unequal wave lengths could be joined, for example, but two more
interesting cases are a) a sharp crested periodic wave jointed to a sharp
crested solitary wave, which resembles the familiar dispersive pattern in
linear elasticity for a step load on the end of a right circular cylinder,
and b) a uniform state joined to a sharp crested solitary wave, which is
really just a limiting form of iva) and might be termed a structured shock
wave. With these constructions it is possible to join two arbitrary
(within limits) stress states with a steady wave.

B. T(c) is concave down and at c0, T ( 0) < v'(o .

If the stress/strain curve for uniform extension turns over so far
that T ( 0) < I(dEo ), then the previous construction for bounded solutions

must be modified by choosing c such that TC (c ) < pc2 < P(co). In all

other respects, however, the construction is the same. Equal areas to the

right and left of eo extend to Emax and emil* Limiting cases occur when Emin

coincides with either or c* (for the case of increasing 11) or when Emax

coincides with c* (fir the case of decreasing ). Periodic waves, includ-
ing periodic shock waves, look much the same as before, but the wave of

infinite period (i.e., the solitary wave) is now a propagating neck rather
than a bulge as previously and the limiting case is a sharp notch rather
than a sharp crest. Since two different steady waves can be joined through
a shock wave, many combinations are possible, but perhaps the most inter-
esting case is the structured shock wave which joins a uniform state to
half of a sharp notch. The sketches in Figure 5 should be compared with
those in Figure 4.

C. T(c) has an inflection point and T (E ) < P(co).

In this case the equal area construction can lead to a smooth

transition from one uniform state to another provided that
2

T (O ) < pC < Ji( 0) and E* lies outside the range of strains in the tran-

sition. The constant C is equal to half the doubly cross hatched area
shown in Figure 6a. The construction is valid even if the stress/strain
curve for uniform extension has a maximum and a minimum as shown in Figure
6b. Such a curve has been suggested by Ericksen as a model for phase
change 7 and was used by Coleman to describe necking and drawing of poly-
mers.6  In the latter context the solution represented by Figure 6b shows
the influence of radial inertia and radial shear on the drawing process at
high speed. Note also the implication that the drawing speed is limited by

the shear speed of the undrawn (drawn) material for 11(E) increasing
(decreasing).

7Ericksen, J. Z., "Equniriw o Bars, " J. EZasticit 5 (1975) 191-201.
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It is possible for c* to lie at either the minimum or the maximum
strain of the transition. In that case there will be a shock discontinuity
on one side or the other of the transition, but as long as the equal area
construction can be maintained, a transition solution still exists. In
this case tk~e constant C is equal to half the total cross hatched area in
Figure 6b.

VII. UNBOUNDED SOLUTIONS

So far only solutions that are bounded for <m Z - ct < -have been
described, but there are unbounded steady wave solutions as well. To find
these, it is easiest to adopt a slightly different point of view based on
the phase plane.

As an example refer to Figure 1, consider the case shown there for 11(c)
decreasing and e*<eC and suppose that C0and c are both fixed. The

construction is such that the right hand side of equation (16) has a min-
imum at c = c0and a maximum at c = . The constant C can be either posi-

tive or negative so the right hand side of (16) has either one or three
real zeros including a possible double zero at the maximum or minimum. The

coeficentof ' 2on the left hand side of (16) has only a simple zero at
C = e". Bearing these facts in mind and taking account of the relative
positions of the zeros on both sides, one may solve equation (16) for E' as
a function of e and sketch a family of curves, as in Figure 7, each member
of which corresponds to a different value of C. Because of the zero at 6*,

no curve can cross the vertical line E: = e* except the case where the right
hand side of (16) has a zero at c* as well, and because of incompressibil-
ity, no curve can cross the line E6 -1. For other values of T 0, C 0, and c

the phase plane diagram can be substantially modified. For example, the
location of 6* cobviously will have a pronounced effect, and if the straight
line through T 0, C has no other intersection with T(e) , there can be no

orbits that correspond to smooth solitary waves.

The closed trajectories around c0represent periodic waves with the

curve labeled L being the limiting case of sharp crested waves. Examples
of unbounded trajectories are labeled A through G. Even though theseI trajectories are unbounded in the phase plane, the corresponding deforma-

-' tion patterns are readily interpretable, and are also sketched in Figure 7,
showing the rod radius as a function of . Although no solution to an
initial/boundary value problem could include any point with 6 -1 or 6
or El ±-, a segment of an unbounded trajectory that does not include such
singularities would be perfectly acceptable. Problems in which the mater-
ial moves at constant speed with respect to fixed boundaries, where fixed
boundary conditions are specified, would fall in this category.
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